

Release 4.8 August 2021 This guide, as well as the software described in it, is covered under license agreement and may be used or copied only in accordance with the terms of the license agreement. The information in this manual is subject to change without notice and may not be reproduced without Hamamatsu's permission. Hamamatsu has carefully prepared this manual, however, no responsibility is assumed for possible inaccuracies or omissions. Some images are simulated.

HCImage is a trademark of Hamamatsu Corporation. DCAM-API and ImagEM are registered trademarks of Hamamatsu Photonics K.K. (EU, Japan, U.K., U.S.A.). ORCA is a registered trademark of Hamamatsu Photonics K.K. (China, France, Germany, Japan, U.K., U.S.A.) All product and brand names are trademarks or registered trademarks of their respective companies.

Hamamatsu Corporation

360 Foothill Road, Box 6910 Bridgewater, NJ 08807-0910 USA +1 908.231.0960 sales@hamamatsu.com https://camera.hamamatsu.com/us/en/index.html

Software Support

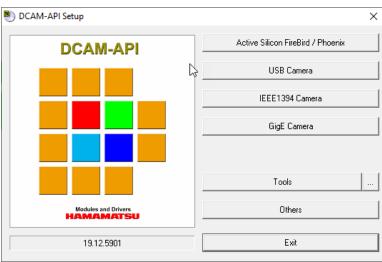
hcsupport@hamamatsu.com www.hcimage.com

Table of Contents

Installation	
Install HCImage	. 3
Install DCAM-API Drivers	. 3
Add Devices to a Profile	
Add a Camera	. 4
Add an Olympus IX-83 Automated Microscope	. 4
Add a Filter Wheel and a Shutter	. 6
Add a Parallel Port as an IO/LED Device	
Calibration	
Calibrate an Image from Pixels to Microns	. 8
Link Calibration to Objective	. 8
Calibrate a Stage	. 9
Filter Setup	
Filter Wheel and Shutter Setup	.10
Lambda DG-4 Filter Setup as an I/O Device	. 11
Capture	
Capture a Color Image	.13
Define a Custom SubArray for Maximum Speed	.14
Control an LED using Output Trigger from the Camera	.15
How to Setup a Background Subtraction	
Sequence	
Setting up a Time Lapse	.17
High Speed Streaming	.20
IPA Overview	
Understanding the Workspace	.23
IPA Examples	
Advanced Analysis - Muscle Fiber Example	.25
Sequence Intensity Analysis - Simple Mode	. 27
Single Image - Measure Analyze Objects Inside of a ROI	.28
Batch Export	
Batch Export DCIMG to MPTIFF	29
Troubleshooting	30

INSTALLATION

Install HCImage


- 1. Insert the HCImage installation DVD into the DVD-ROM drive. If autoplay is enabled, the HCImage setup will run automatically. If autoplay fails to start, locate your DVD-ROM drive and double-click on **setup.exe**.
- 2. Click **Yes**, if prompted by the User Account Controls.
- 3. To begin the installation wizard, click **Next**.
- 4. Review the Software License information and click **Yes**.
- 5. Review the README section for up-to-date information on software compatibility and support. When you are ready, click **Yes**.
- 6. On the Personalize screen, enter your registration information and click **Next**.
- 7. Choose the Destination Folder and click **Next**. It is recommended to install the software in the default path.
- 8. If you are ready to proceed with the installation, click **Install**.
- 9. Follow the instructions on each installation page.
- 10. Securely connect the dongle () to a USB port after the software installation has finished.
- 11. Install the appropriate DCAM-API drivers, see the instructions below, then turn your camera on prior to launching HCImage.
- 12. Click the **HCImage** icon on your Desktop to launch HCImage.
- 13. Register the software to receive technical support, please go to <u>www.hcimage.com</u> and click **Register**.

Install DCAM-API Drivers

Before installing the camera driver, make sure that the camera is turned off.

- Open Windows Explorer, go to HCImage installation DVD, expand the **Drivers folder**, open the **Cameras folder** and open the **DCAM folder**. If you downloaded HCImage, please go to <u>http://www.dcam-api.com/</u> and download the DCAM-API drivers for Windows.
- 2. Double-click **Setup.exe** to launch the DCAM-API Setup dialog.
- 3. Click **Yes**, if prompted by the User Account Controls.
- Select the appropriate driver for your Hamamatsu camera from the DCAM-API Setup dialog. If you are unsure of which driver to install, please consult the DCAM-API Compatibility Note or contact your local Hamamatsu representative. To view DCAM-API Compatibility Note, select Others and then click Compatibility Note.
- 5. Click **Next** to begin the installation.
- 6. Follow the instructions on each installation page and click

Finish when the installation is complete.

ADD DEVICES TO A PROFILE

Add and setup peripheral hardware devices to the profile. Supported hardware includes: cameras, stages, filters, shutters, I/O and microscope devices. For a list of supported devices, please visit our website at http://hcimage.com/support/hardware.htm.

Add a Camera

Launch HCImage, go to File, select Current Profile and then follow the steps below to add a camera to the profile.

Device Control Select Image Capture Devices	Add Click Add	Select Device Select Single Camera click OK	Select Camera Select C11440-22CU and click OK	5 Select the C11440-22CU
Properties of ORCA-	Flash4.0	×		
Default File Paths Device Control Add the physical devices attached to the syste allow software control	em to Single Camera Uual Camera W-VIEW Can	a	Select Camera × C3484-05G S/N: 740127 C11440-22CU S/N: 9Y9022 C11440-22CU S/N: 9Y9022 C11440-22CU S/N: 9Y9022	
⊕-च≫ Disk. [Active] ⊕-च≫ C11440-22CU S/N: 9Y9022	Add Remove Properties Cancel Help	Mono: 1	Devices Sequence Analysis Channel V Disk Disk Disk Losu Losu	

Add an Olympus IX-83 Automated Microscope

Olympus 64-bit Drivers from the HCImage DVD

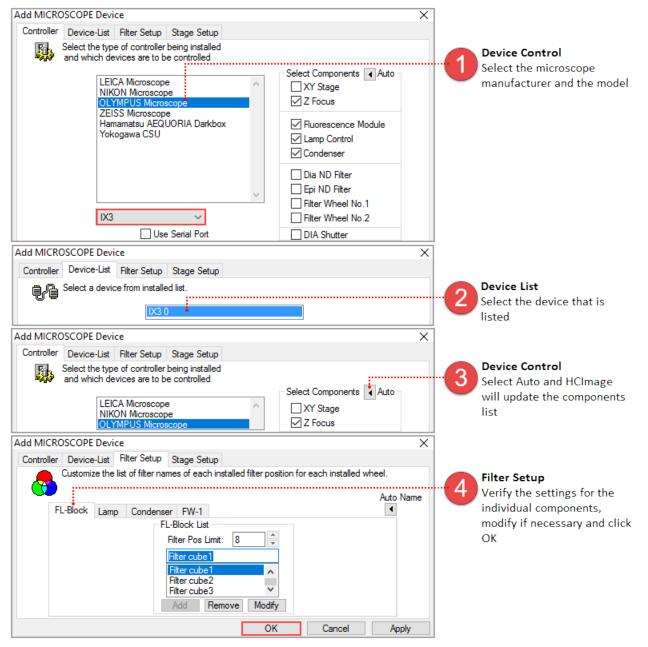
Be advised that this application installs the Olympus Camera and Microscope drivers, as well as copying all of the necessary dlls into the HCImage directory.

- 1. Open the DVD contents in Windows Explorer and navigate to Drivers\Microscopes\Olympus\Olympus 3 Series\x64.
- 2. Double-click on **Olympus_x64 Install.exe** and follow the installation instructions.
- 3. Click Yes, if prompted by the User Account Controls

Note: If using a Hamamatsu 1394 camera, this driver installation may supersede the Hamamatsu driver causing communication problems. To recover from this issue, please see "**Unable to communicate with Hamamatsu 1394 camera**" on page 30.

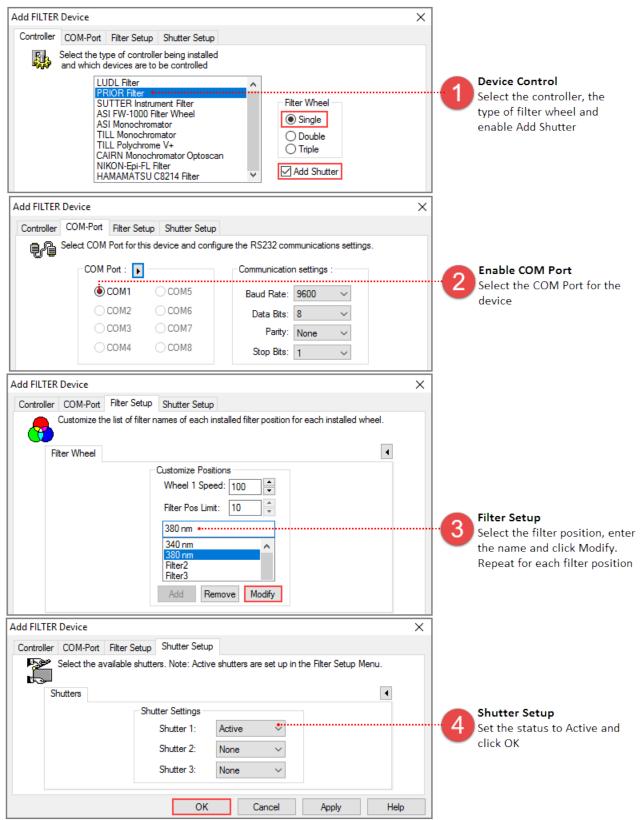
Configure with the Touch Panel Controller

The microscope drivers have been installed, time to configure it using the touch panel controller (TPC) and then add it as a device in HCImage. The first step is to turn on the IX3-CBH (microscope control box) and then the touch panel controller.

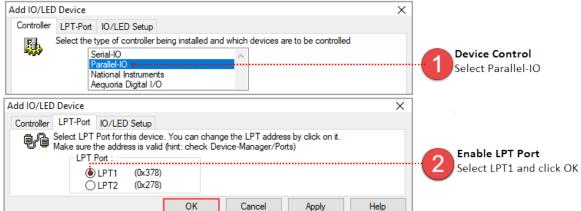

Note: The "Power On" sequence for turning the equipment on before use should be: Light Source > PC > Camera > IX3-CBH > Touch Panel Controller > Launch HCImage.

An initial system setup is required when using the microscope for the first time or after replacing one of the components. The microscope is setup and configured using the TPC.

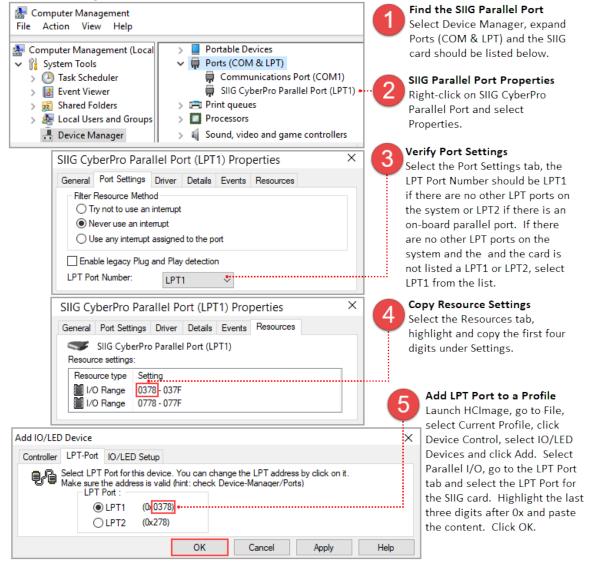
- 1. Go to **System Setting** in the **Menu** screen.
- 2. Select **Unit**, enter the components connected to the IX83 for each module and tap **OK** to save the settings.
- 3. Select **Optical**, enter and configure the objectives, mirror units and condenser.
- 4. Select **Customized**, enter the focus limits and parfocality correction.
- 5. When the setup is complete, tap **X** to exit to the **Menu** screen.


Add Microscope to a Profile

Once the microscope has been setup from the touch panel controller, the next step is to add the microscope to a profile and configure it in HCImage. Launch HCImage, go to File and select Current Profile. In the Device Control tab, select Microscope Devices and click Add.

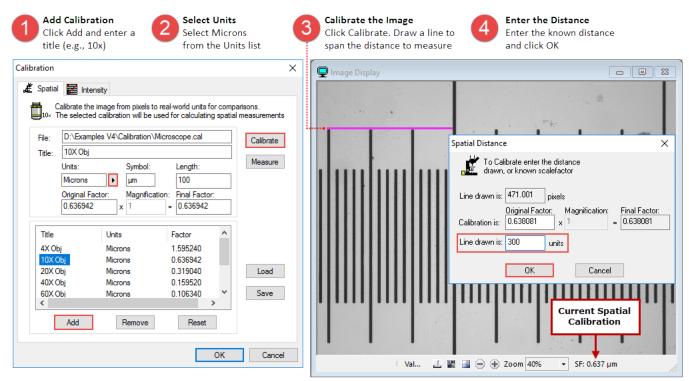

Add a Filter Wheel and a Shutter

Launch HCImage, go to File and select Current Profile. In the Device Control tab, select Filter Devices, click Add and follow the instructions below.



Add a Parallel Port as an IO/LED Device

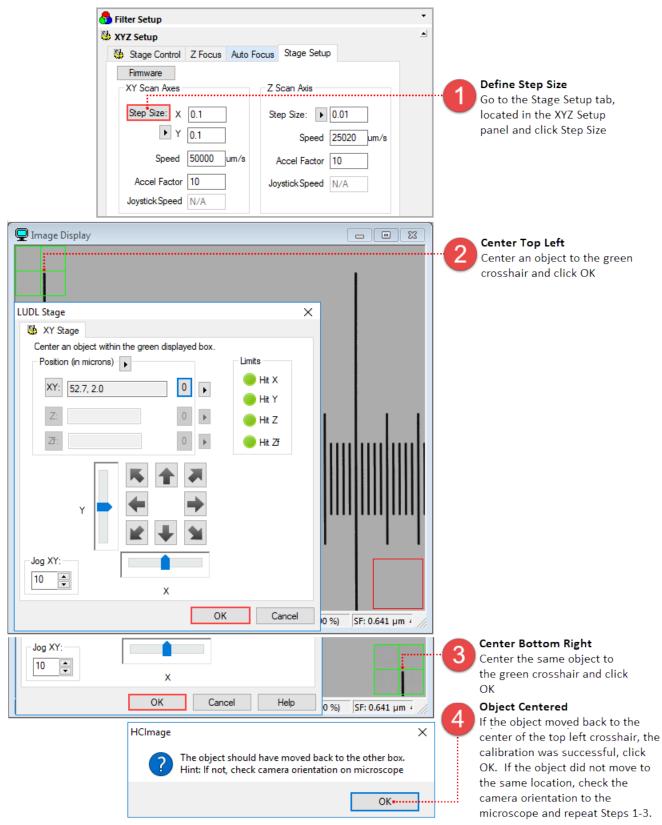
In the Device Control tab, select IO/LED Devices and follow the instructions below.


If the computer doesn't have a parallel port, we recommend the SIIG CyberParallel PCIe port card (<u>http://www.siig.com/it-products/serial-parallel/parallel/pcie/dp-cyberparallel-pcie.html</u>). Install the parallel port card and driver as per the instructions provided with the card and then launch the Device Manager and follow the instructions below.

CALIBRATION

Calibrate an Image from Pixels to Microns

Open or capture an image with some known distance, for example a micrometer. Click on the Calibration Properties icon (\Box_{10} Calibration \bullet) on the Analysis toolbar and follow the instructions below.

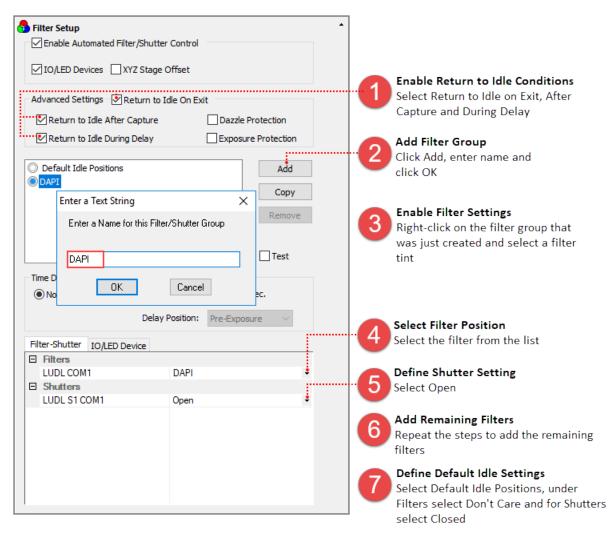

Link Calibration to Objective

To link the calibration to an objective, go to the Microscope Setup panel in the Devices pane and follow the steps below.

Objective / Magnification Nose 4x 10x 20x 40; UPLSAPO - NA: 0.95 AS: 6-6; 0 0 0		Link to Calibration	Enable Link to Calibration Click and select Link to Calibration
Condenser 1: NONE	10x Ret 60x Default	turn	Select Calibration
Side/Back-Bo	40x •	2	Right-click on the 40x objective and select the 40x calibration

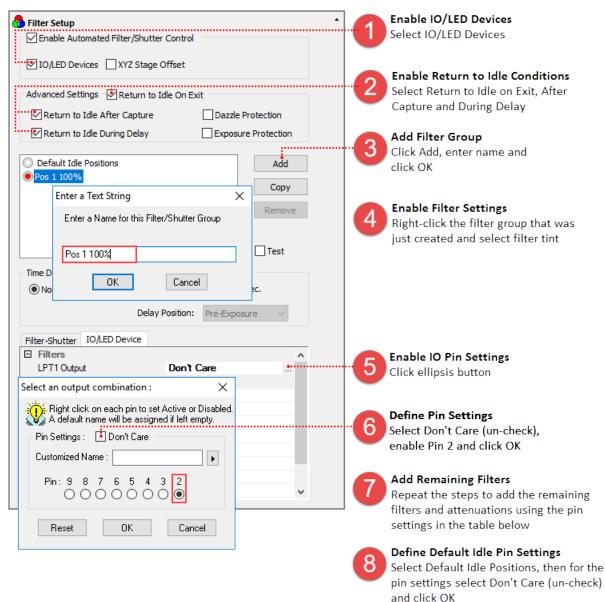
Calibrate a Stage

Before calibrating the stage, make sure to load the correct scale factor for the selected objective and then follow the instructions below.



FILTER SETUP

Once the filter device has been added to the profile it will need to be configured in the Filter Setup. The examples below outline the basic steps for configuring two commonly used filter devices, a filter wheel with a shutter and a Lambda DG-4.

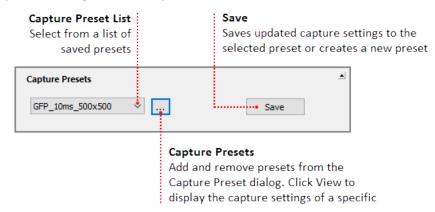

Filter Wheel and Shutter Setup

After the filter wheel and shutter have been added to the profile, go to Filter Setup in the Device pane and follow the instructions below.

Lambda DG-4 Filter Setup as an I/O Device

TTL can be used to control many types of devices. This example explains how to configure a Lambda DG-4 as an I/O Device controlled through the parallel port. In the Device pane go to Filter Setup and follow the instruction below.

Filter Position		Attenuation	
Filter Position	100%	50%	33%
1	Pin 2	Pins 2 & 4	Pins 2 & 5
2	Pin 3	Pins 3 & 4	Pins 3 & 5
3	Pins 2 & 3	Pins 2, 3 & 4	Pins 2, 3 & 5
4	Pin 4	Pin 5	Pins 5 & 4


CAPTURE

The Capture Pane provides a flexible and comprehensive method to access camera features and functionality. The Capture Pane is organized by functionality into panels that can be expanded when in use or collapsed when space is needed. The capture controls at the top of the pane (shown below) are always visible and used for controlling how images are acquired and displayed.

Select the num	Channel Select Select the number of channels to capture		nfigured om list	Auto imag	Save matically save to based on pro Capture1 is s	edefined presets
RGB Color: 2-Ba	and 🗸	C11440-22CU	Capture1] AutoS] Open	v ave Capture1	
Live Color Display live color image of merged channels		o focus a prior to	Capture1 Will initiate single captu cycle	-	Open Captur If selected, w captured ima image docum	vill open each ge as an

Capture Presets

Capture presets save basic settings such as the capture mode, channels, filters, exposure times, as well as output trigger settings and advanced camera properties. For a list of the camera settings that are saved, select a capture preset from the Capture Presets dialog and click View. HCImage will load the capture settings from the previous session when launched.

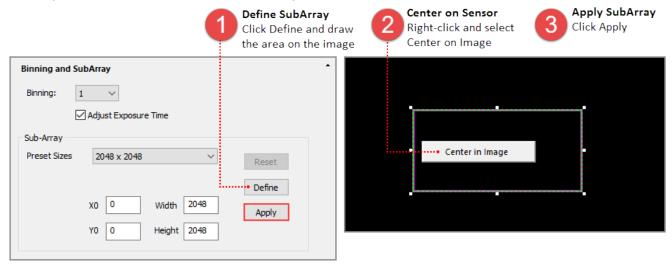
Note: Capture presets are not automatically saved before changing presets or exiting the software. To make changes to a saved capture preset, select the capture preset from the list, adjust the capture settings and click Save.

Capture a Color Image

Capturing a color image requires filter setup, for instructions on configuring filters, please see "**Filter Setup**" on page 10.

RGB Color: 3-Band C11440-42U S/N: 000030	Select Capture Mode Select RGB Color: 3-Band
Live Color Live Capture 1 AutoSave Open Capture 1	Select Filters
📾 Camera Control	Select Red for channel 1, Green for channel 2 and Blue for channel 3
Auto Expose Gain 🔒 Exposure	•• Adjust Exposure Click Live and adjust the exposure manually or use Auto Expose
✓ 1 ■ RED < > 0 → 10.41 → ms	
✓ 2 GREEN ∨ < > 0 ▲ 11.97 ▲ ms	Capture a Color Image Click Capture1
✓ 3 ■ BLUE ✓ > 0 ▲ 13.27 ▲ ms	

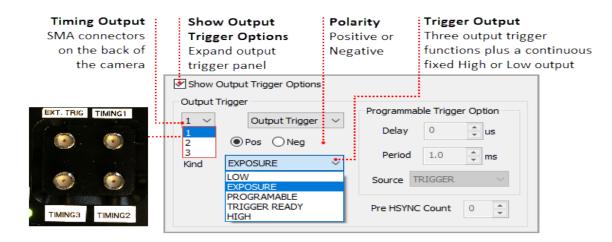
Hint: In order to achieve the best possible speed when acquiring color images, set the same exposure for each channel. Once each of the exposures have been entered, click the Exposure Lock icon (


How to use AutoSave

Enabling AutoSave will automatically save the current image every time Capture1 is selected. The captured image is saved as a TIFF based on the file name and destination directory defined in the AutoSave Properties dialog. Enable AutoSave and then click on the ellipses to open the AutoSave Properties dialog.

AutoSave Properties Type	Use MPTIFF for multi-image Capture	TIFF or MPTIFF Enable to save as M for multiple image of versus individual TI images	capture
Location Folder: D:\Experiment Data\ File Name Prefix: Image		Set Location Click the ellipsis icc navigate to the desi directory	
Start Number: 5	Use Leading Zeros (ex: 00035)	Set Default File Na Enter file name	me
Ők	Cancel	Click OK	

Define a Custom SubArray for Maximum Speed


Click Live, focus on the sample and move the area of interest into the center of the image. Follow the steps below to define a custom subarray.

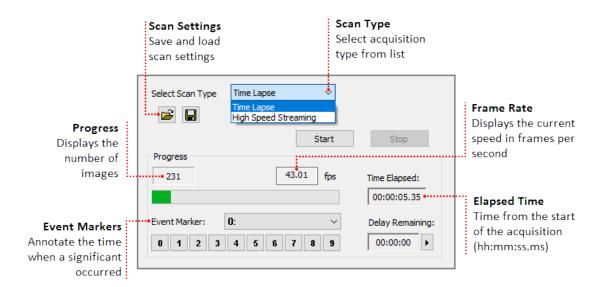
Note: Centering the subarray for maximum speed is only required for the ORCA-Flash 4.0 series cameras.

Control an LED using Output Trigger from the Camera

Some cameras provide a range of output trigger signals to synchronize with an external instrument where the camera becomes the master and the external instrument becomes the slave.

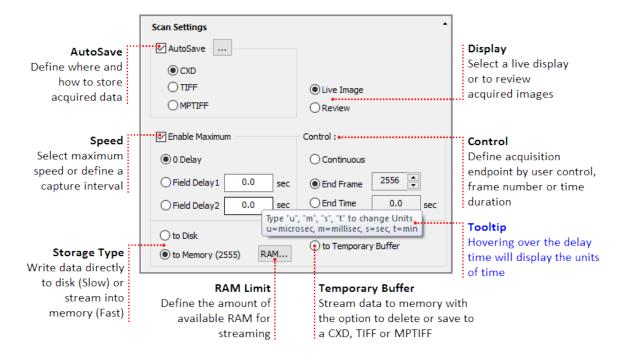
How to Setup a Background Subtraction

Typically used in fluorescence microscopy, a background subtraction can be used when the image presents a dark non-uniform background. To perform a background subtraction click Live, bring the sample into focus and then move the stage off of the sample so that only the background is visible. Next, follow the steps below, when finished move the stage to bring the sample into view and the background subtraction is applied.

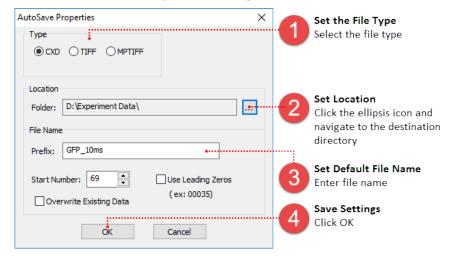

Software	Background Subtraction	Image: Background.1	Correction Image Select Buffer and click Capture
	Further Processing NONE	Offset: 100 -	Camera Offset Enter 100
	Rolling Average Frame Integration Auto	Frames: 4	Operation
	Shade Correction Image Subtraction Correction Image	Offset: 0	Select Background Subtraction
	Disk Browse => Buffer Capture	Processing ON for correction image	
	O Subtraction/Addition		

Hint: HCImage remembers the capture settings from the previous session, if background subtraction was left enabled, Process ON will be displayed in the Camera Control panel. The display image may appear distorted or black.

🔤 Camera Control	
Cooling Temp: □-5.00 °C	Auto Expose
Process ON	Gain 🔒 Exposure
✓ 1 □ Default: ✓ <	> 0 🔺 25.0 🛉 ms


SEQUENCE

The Sequence pane provides a variety of options for defining a time lapse or high speed streaming. The sequence controls at the top of the pane (shown below) are always visible and used for selecting the scan type and reporting in real time, information about an ongoing sequence. This sections covers the basic steps for setting up a typical time lapse and high speed streaming.


Setting up a Time Lapse

The Scan Settings panel provides a variety of options for defining a time lapse to fit the needs of your application. This section provides three examples of typical time lapse settings, using each of the storage options.

How to Use AutoSave

In the AutoSave Properties dialog, the user can determine how and where to store the acquired data. Image data can be saved as a CXD, TIFF or MPTIFF. The example below provides a description of the Auto Save Properties dialog.

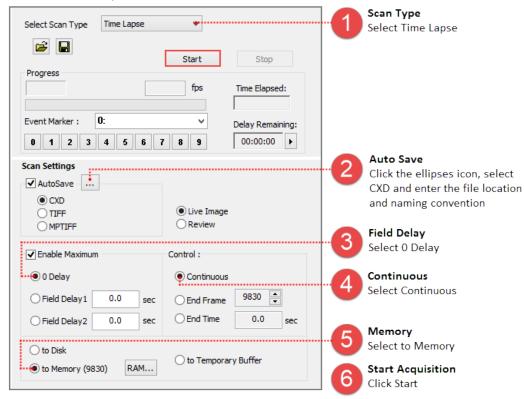
Note: MPTIFF files have a 65,000 image limit or 4 GB size limit. For image sequences exceeding these limits, multiple MPTIFF files will be saved and numbered sequentially.

Setup a Time Lapse - Save to Disk

The time lapse in this example will acquire an image every 30 seconds for 3 hours and the data will be saved as a cxd. Once your are satisfied with capture settings and the sample is in focus, go to the Sequence pane and follow the steps below.

Select Scan Type Time Lapse	♥ Start Stop fps Time Elapsed: ♥ Delay Remaining: 7 8	Scan Type Select Time Lapse
Scan Settings AutoSave CXD TIFF MPTIFF	● Live Image ○ Review	Auto Save Click the ellipses icon, select CXD and enter the file location and naming convention Field Delay
Enable Maximum 0 Delay Field Delay1 30.0 sec Field Delay2 0.0 sec	Control : Continuous End Frame 0 • End Time 3.0 hrs	Enter 30 s End Time Enter 3 h
to Disk to Memory (2581) RAM) to Temporary Buffer	DISK Select to DISK 6 Start Acquisition Click Start

Setup a Time Lapse - Save to the Temporary Buffer


Acquired data is stored in memory with the option to review the image sequence before saving or deleting it. When Temporary Buffer is selected, End Frame is automatically enabled and display the maximum number of frames that can be streamed to memory. Once your are satisfied with capture setting and the sample is in focus, go to the Sequence pane and follow the steps below.

Select Scan Type Time Lapse	Start Stop	1	Scan Type Select Time Lapse
Scan Settings AutoSave CXD TIFF		2	Auto Save Click the ellipses icon, select CXD and enter the file location and naming convention
 MPTIFF ✓ Enable Maximum ● 0 Delay 	Control: Continuous	3	Field Delay Select 0 Delay
Field Delay1 0.0 sec Field Delay2 0.0 sec	End Frame 500 Sec End Time 0.0 sec	4	End Frame Enter 500
to Disk to Memory (2481) RAM	to Temporary Buffer	5	Temporary Buffer Select to Temporary Buffer
	ffered Images ×	6	Start Acquisition Click Start
Prefix: 061015 Start Number: 7 • Overwrite Existing Data	Use Leading Zeros (ex: 00035)	7	Acquisition Complete Review acquired data using the playback controls in the Image Display
Range	1500 Count: 500, incr. 1 OK Cancel	8	Save or Delete Save - click OK Delete - click Cancel

Note: Streaming to the Temporary Buffer is very useful because it provides the option to review the image sequence when trying to capture specific event and for demonstrating camera speeds.

Setup a Time Lapse - Save to Memory

The time lapse in this example will store images in memory until the acquisition is stopped or runs out of memory at which point the acquired images are saved to disk for the remainder of the time lapse. Once your are satisfied with capture settings and the sample is in focus, go to the Sequence pane and follow the steps below.

High Speed Streaming

High Speed Streaming is used to obtain the fastest acquisition speed from the camera. This scan is optimized for single channel streaming to RAM or directly to the computer's solid state drives (SSD) configured in a RAID 0.

Note: Acquisition rates will vary based on the PC configuration, for information about the computer requirements, please see the <u>PC Recommendations for ORCA-Flash4.0 V3 / LT+</u>.

Control			
Enter the number of frames			
to acquire and the	Scan Settings	•	
approximate end time is			
displayed to the right	•••• Frame Count 2000 🚔	Best Time 16.66 sec	
Stream Type			
Stream directly to HDD or	DISK D:\Experiment Data\r	ec*.dcimg	DCIMG Location
into memory with option to			Set a file location for
use Circular Buffer	RAM Circular Buff	er	streaming data to DISK
AutoSave/AutoConvert Define how streamed data is handled	AutoSave AutoConvert AutoSave AutoConvert CXD TIFF MPTIFF	Live Image Review	Display Select a live display or to review acquired images

Note: High Speed Streaming does not support multi-channel acquisition, camera registration features (i.e., flip, rotation and pixel shift) or software processing operations (e.g., shade correction and rolling average).

Steps for Streaming to Disk

When streaming to disk, a temporary file (.dcimg) is created to store the data while it is being acquired, the temporary file location needs to be located on the RAID array, SSD drive, or the fastest drive available. Configure the capture settings, go to the Sequence pane and follow the steps below.

AutoConvert AutoConvert O CXD O Live Image Start Streaming	Select Scan Type High Speed Streaming	Select Scan Type Select High Speed Streaming
Event Marker: 0 1 2 Enter Frame Count 01 3 Select Stream Type Select DISK 100 Best Time 9.9003 Select Stream Type Select DISK 100 Image Image Image Image		
0 1 2 3 4 5 6 7 8 9 00:00:00 • 2 Enter Frame Count Scan Settings • • • 2 Enter Frame Count Enter the number of images to acquire Frame Count 1000 • • 9.9003 sec 3 Select Stream Type DISK D: \Experiment Data \DCIMG\yec*.dcimg • • 4 Auto Convert File Ty RAM • • • • • • • AutoConvert • • • • • • CXD • • • • • • TIES • • • • •	0 fps Time Elapsed:	
Scan Settings 2 Enter the number of images to acquire Frame Count 1000 Best Time 9.9003 sec 3 Select Stream Type Select DISK DISK D: \Experiment Data \DCIMG\yec*.dcimg 3 Select DISK RAM Circular Buffer 4 Auto Convert File Ty Enable AutoConvert aselect file type O TIES O Live Image Start Streaming		
DISK D:\Experiment Data\DCIMG\rec*.dcimg 3 Select Stream Type RAM Circular Buffer 4 Auto Convert File Type Image Auto Convert File Type Enable AutoConvert a select file type Image Start Streaming	Scan Settings	Enter the number of
Auto Convert File Ty Enable AutoConvert File Ty Enable AutoConvert a select file type		<
AutoConvert AutoConvert CXD CXD CXD CITCE Select file type Start Streaming		Auto Convert File Type
Start Streaming		
OMPTIFF OReview 5 Click Start	OTIFF OReview	

Note: To leave the streamed data as a DCIMG file disable AutoConvert.

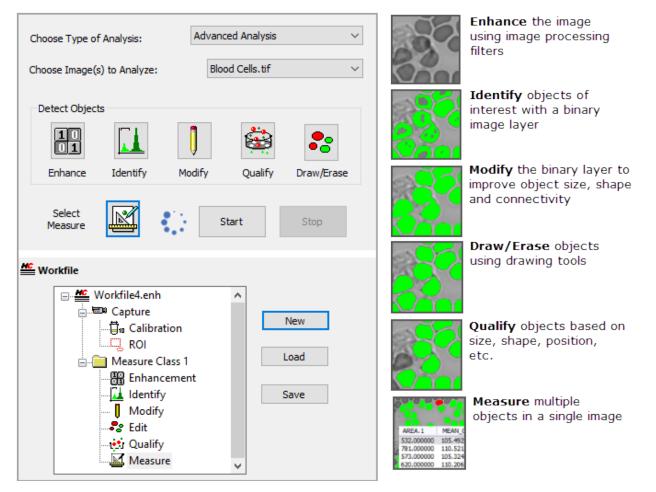
Steps for Streaming to RAM

Acquired data is stored in memory with the option to review the image sequence before saving or deleting it. In the AutoSave Properties dialog, the user can determine how and where to store the acquired data. Once your are satisfied with capture settings and the sample is in focus, go to the Sequence pane and follow the steps below.

Note: The Circular Buffer stores streamed data in memory, once the frame count has been reached, the previous acquired data is replaced sequentially. The cyclic process repeats until the acquisition is stopped, leaving the most recent images stored in RAM.

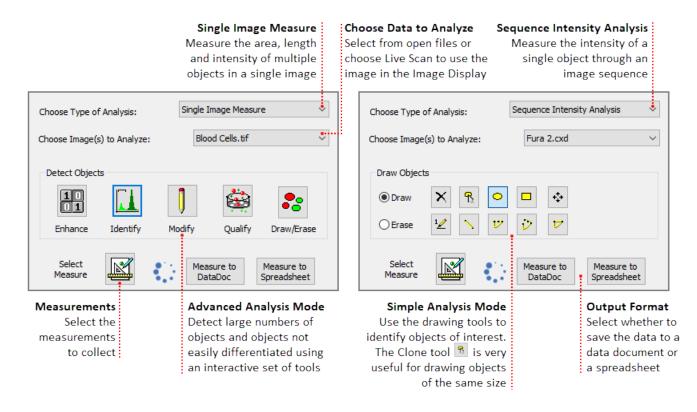
Select Scan Type High Speed S	treaming 🔹		1	Select Scan Type Select High Speed Streaming
Progress 0	Start fps	Stop Time Elapsed:		
Event Marker:	7 8 9	Delay Remaining:		
Scan Settings		9,9003 sec	2	Enter Frame Count Enter the number of images to acquire
DISK D:\Experiment Data	Best Time		3	Select Stream Type Select RAM
AutoSave	ıffer		4	Auto Save File Type Enable AutoSave and select file type
 ● CXD ○ TIFF ○ MPTIFF 	Live Image Review	e	5	Start Streaming Click Start

IPA OVERVIEW


Image Processing and Analysis provide an extensive selection of image processing and image analysis tools to enable quantitative analysis on a wide range of complex image sequences. Imaging tools are selected using customized icons to derive workfiles (macros), which are saved and can be used multiple times. Images are saved with measured data allowing dynamic interaction between images, objects, graphs and tables to provide instant user feedback.

Understanding the Workspace

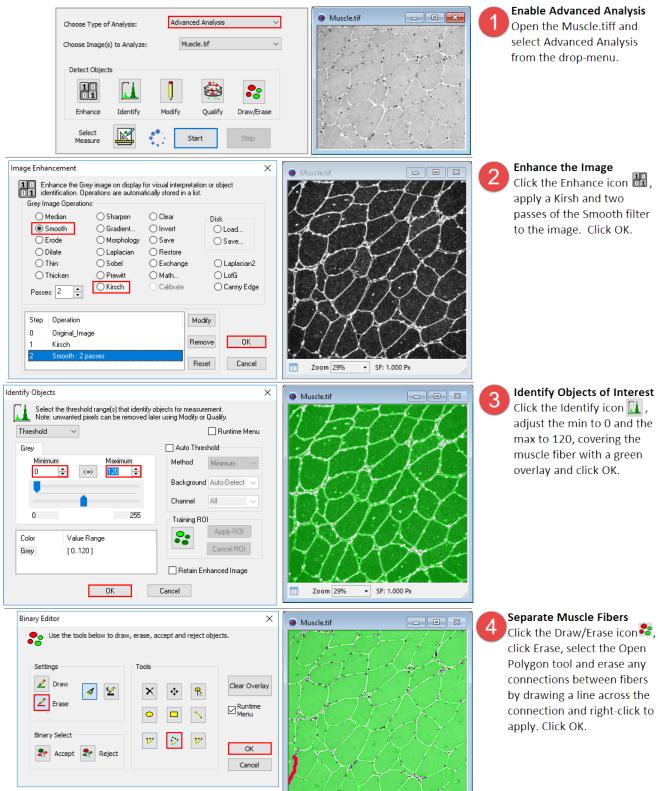
The Image Processing and Analysis functionality is accessed through the Analysis pane by selecting Advanced Analysis from the Choose Type of Analysis list. In addition to the Advanced Analysis, Single Image Measure and Sequence Intensity Analysis are also available. For Single Image Measure and Sequence Intensity Analysis the user can select from Simple Analysis and Advanced Analysis modes by going to View in the menu bar, then highlight Analysis Mode and select Simple or Advanced. The Simple modes provides a variety of drawing tools that can be used to identify objects of interest. The Advanced mode described in the example below.

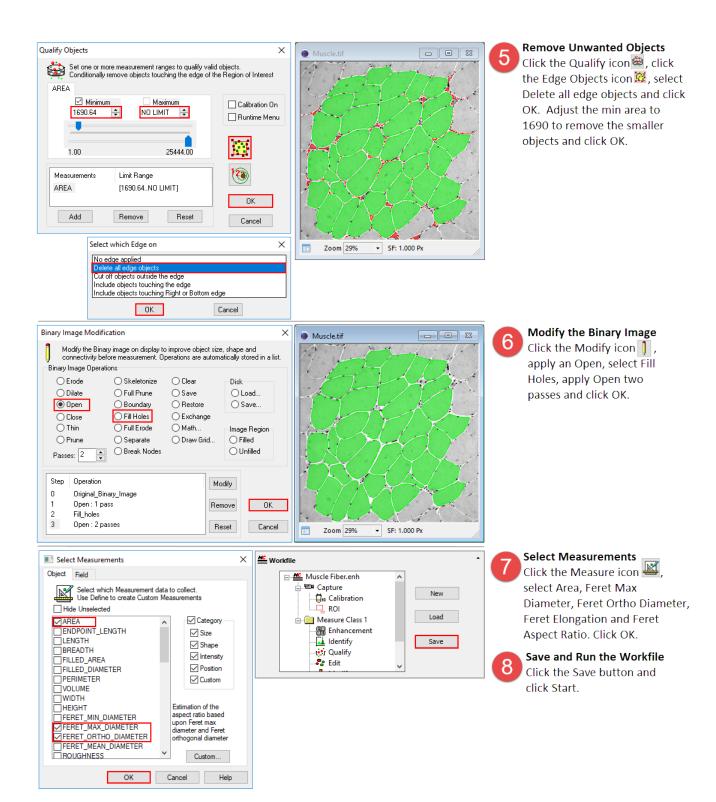

Advanced Analysis

For Advanced Analysis, the measurement algorithm is set up by configuring an icon-driven workfile. This is done by adding steps in an interactive process and observing the effects on the identified image objects as the various steps are added and modified as shown below. The procedure is methodical, where the operator selects each option interactively. The steps used can be saved in a workfile (.enh) for later reuse, review, or modification.

Single Image measure

For Single Image Measure, measure the size, shape, intensity, position or create a custom measurement of multiple objects in a single image. The image can be from the Live Scan (image display), part of an image sequence, or a single standalone image. The object of interest can identified using the Advanced Analysis mode or drawn using the Simple Analysis mode (both shown below). The Simple mode is active by default but can be changed by clicking View on the Menu bar, highlighting Analysis Mode and selecting Advanced. The measured data can be saved to data document (.cxd) or to a spreadsheet.

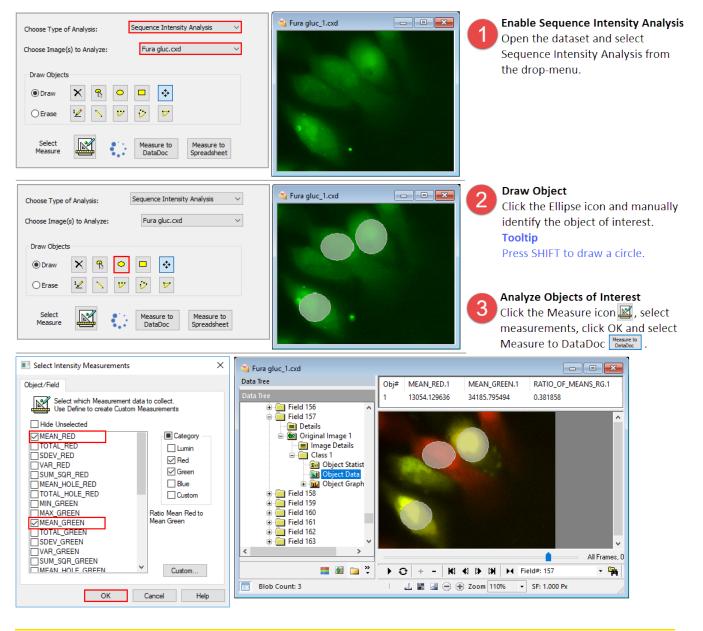

Sequence Intensity Analysis


For Sequence Intensity Analysis, measure the intensity of a single object over time in an image sequence. The object of interest can identified using the Advanced Analysis mode or drawn using the Simple Analysis mode (both shown above). The Simple mode is active by default but can be changed by clicking View on the Menu bar, highlighting Analysis Mode and selecting Advanced. If multiple areas are drawn or identified, they are treated as a single object. The measured data can be saved to data document (.cxd) or to a spreadsheet.

IPA EXAMPLES

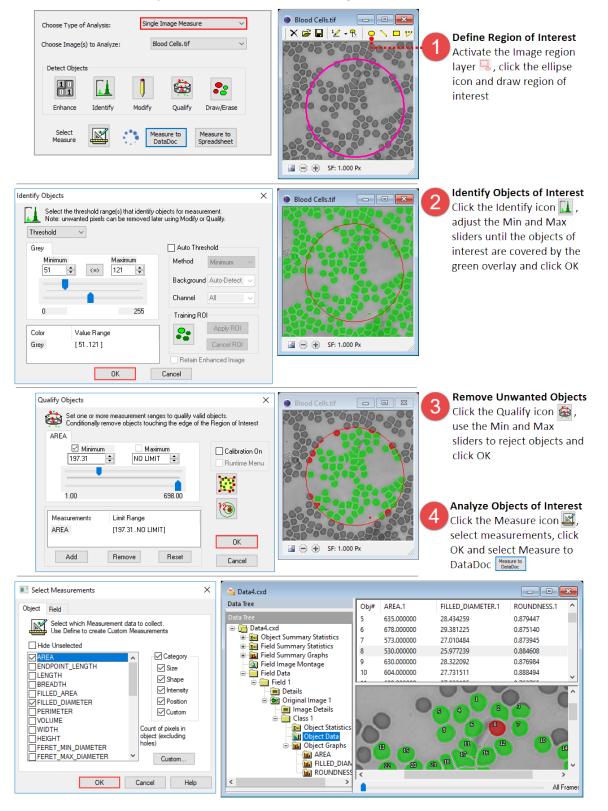
Advanced Analysis - Muscle Fiber Example

The example below explains how to create a Workfile for measuring the size and shape of muscle fibers.



HAMAMATSU PHOTON IS OUR BUSINESS

Sequence Intensity Analysis - Simple Mode


Sequence Intensity Analysis will measure the intensity of a single object in the image sequence. If multiple areas are drawn or identified, they are treated as a single object. HCImage has two modes, the Simple mode is active by default but can be changed by clicking View on the menu bar, then highlighting Analysis Mode and selecting Advanced.

Note: Change the overlay color to silver instead of green in the **Change Overlay Color** icon. Use the translucency slider to adjust the overlay transparency or hide it by selecting **View Overlay**. Click **Clear** to delete the overlay.

Single Image - Measure Analyze Objects Inside of a ROI

Enable the Advanced Analysis mode by clicking View on the Menu bar, then highlighting Analysis Mode and selecting Advanced. Open an image, go to the Analysis pane and select Single Image Measure from the drop-down list. Click on the image and follow the instructions below.

BATCH EXPORT

When batch exporting all of the source files must be in the same directory and of the same file type. Source file types include: Data documents (.cxd), Movies (.avi), Multi-Page TIFFs (.tif) and DCIMG Files (.dcimg). Destination file types include: Data documents (.cxd), Movies (.avi), TIFF Files (.tif), Multi-Page TIFFs (.tif),OME-TIFF (.tif),), Bitmap (.bmp), JPEG (.jpg), and PNG (.png).

Note: MPTIFF files have a 65,000 image limit and 4 GB size limit. For image sequences having more than 65,000 images or larger than 4 GB, multiple MPTIFF files will be saved and numbered sequentially.

Batch Export DCIMG to MPTIFF

In the File menu select Batch Export and follow the instructions below. The exported files are not automatically opened in the software.

Batch Export	×		Enter Source Location
Export Drive, Path, Root, & Type			Type: Select DCIMG Files
Source	Destination	-	Browse: Go to the file directory
Type DCIMG Files (*.dcimg) D:\Experiment Data\ Browse Browse for Files	Type Multi-Page TIFFs (*.tif) D:\Experiment Data\OMETIFF\ Browse	2	Enter Destination Location Type: Select Multi-Page TIFF Files Browse: Go to output directory
rec00001.dcimg rec00002.dcimg rec00003.dcimg rec00004.dcimg	✓ File Name Prefix DRG_GFP_10ms Start No. 1 ↓ Leading Zeros (ex: 0001)	3	Define Output File Name Define the file naming convention
Remove Selected	Convert 16-bit to 8-bit Create folder for TIFF series Separate RGB files Channel Options Split Image Single Color Image	4	Enable Create Series Folder Select Create folder for TIFF series
Result Total Items : 4	A-Red B-Green Left/Right XY Shift for B Plane 0, 0	5	Export to MPTIFF Click OK
	OK Cancel		

Note: Depending on the destination file type, certain options are available.

- **Convert 16-bit to 8-bit**: Converts 16-bit monochrome images to 8-bit and will convert 48-bit color images to 24-bit. All movies (.avi) are exported 8- or 24-bit files.
- **Create folder for TIFF series**: Creates a folder for each exported TIFF or Multi-page TIFF series (i.e., one folder is created for each source file). This option is turned on by default but can be disabled.
- Video Compression: Use a video compression algorithm when converting to movie file format. The compression algorithms are based on the video codecs installed on the computer. Video compression is only available when exporting to movies (.avi).

TROUBLESHOOTING

System Information

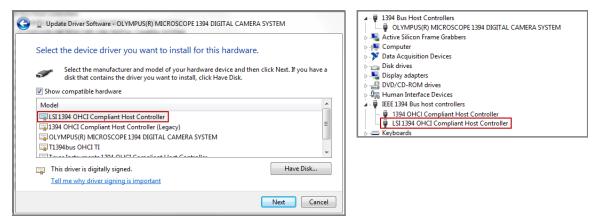
What version of Windows is installed?

Press the **Windows Logo #** + **Pause/Break** keys to view the System Properties window. The Windows System Properties displays a basic overview of the computer including Windows edition and System type (i.e., 32-bit or 64-bit).

View basic information about your computer Windows edition Windows 7 Enterprise Copyright © 2009 Microsoft Corporation. All rights reserved.		View basic information about your computer Windows edition © 2013 Microsoft Corporation. All rights reserved. System			
Service Pack 1		Processor: Installed memory (RAM): System type: Pen and Touch:	Intel(R) Xeon(R) CPU 12.0 GB (10.0 GB usable) 64-bit Operating System, No Pen or Touch Input is		
System		View basic information	about your compute	r	
Rating: Processor: Installed memory (RAM): System type:	Your Windows Experience Index needs to be refreshed Intel(R) Xeon(R) CPU E5504 @ 2.00GHz 2.00 GHz 12.0 GB 64-bit Operating System	Windows edition Windows 10 Enterprise © 2017 Microsoft Corpora reserved.	tion. All rights	Windows 10	
Pen and Touch:	No Pen or Touch Input is available for this Display	System Processor: Installed memory (RAM):	Intel(R) Xeon(R) CPU 12.0 GB	E5620 @ 2.40GHz 2.39 GHz (2 processors)	
		System type:	64-bit Operating System,		
		Pen and Touch:	No Pen or Touch Input is	available for this Display	

Unable to communicate with Hamamatsu 1394 camera

Was the Hamamatsu 1394 driver re-installed after installing the Olympus drivers?


- 1. Right-click on **My Computer**, select **Manage** and select **Device Manager** in the System Tools list.
- 2. Right-click on the appropriate 1394 controller and select **Update Driver Software**.

- 3. Choose Browse my computer for driver software
- 4. Choose Let me pick from a list of device drivers on my computer

Update Driver Software - OLYMPUS(R) MICROSCOPE 1394 DIGITAL CAMERA SYSTEM		Update Driver Software - OLYMPUS(R) MICROSCOPE 1394 DIGITAL CAMERA SYSTEM
How do you want to search for driver software?		Browse for driver software on your computer
Search automatically for updated driver software Windows will search your computer and the Internet for the latest driver software for your device, unless you've disabled this feature in your device installation settings.		Search for driver software in this location: C:\Windows\System32 Browse Include subfolders
Browse my computer for driver software Locate and install driver software manually.		Let me pick from a list of device drivers on my computer This list will show installed driver software compatible with the device, and all driver software in the same category as the device.
	Cancel	Nex Cancel

5. Choose the DCAM compatible driver - LSI 1394 OHCI Compliant Host Controller and click **Next** to install the driver.

Light remains on during delay or after capture

Is the light source shuttered or is it an IO/LED device?

Review the Filter Setup setting below. The example on the left is for a shuttered light source and the example on the right is for an IO/LED device.

🔂 Filter Setup	🚯 Filter Setup
Enable Automated Filter/Shutter Control	Enable Automated Filter/Shutter Control
IO/LED Devices XYZ Stage Offset	☑ IO/LED Devices □ XYZ Stage Offset
Advanced Settings	Advanced Settings Return to Idle On Exit
Return to Idle After Capture Dazzle Protection	Return to Idle After Capture
Return to Idle During Delay Exposure Protection	Return to Idle During Delay Exposure Protection
O Default Idle Positions Add	O Default Idle Positions
🖲 340 nm	Pos 1 100%
380 nm Copy	Pos 2 100% Copy
Remove	Pos 1 50% Remove
	© Pos 2 50%
	Pos 1 33% D
Test	Pos 2 33% Test
Time Delay	Time Delay
None Manual Automatic: 0.1 Sec.	None Manual Automatic: 0.1 Sec.
Delay Position: Pre-Exposure 🗸	Delay Position: Pre-Exposure 🗸
Filter-Shutter	
	Filter-Shutter IO/LED Device
E Filters	
Don't care	LPT1 Output 00000000
LUDL S1 COM1 Closed	